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Abstract

Efficient modeling of electromagnetic scattering has always been an active topic in the field of computational
electromagnetics. To reduce the memory and CPU time in the method of moments (MoM) solution, an efficient
method based on pseudo skeleton approximation is presented in this report. The algorithm is purely algebraic, and
therefore its performance is not associated with the kernel functions in the integral equations. The algorithm starts
with a multilevel partitioning of the computational domain, which is very similar to the technique employed in
multilevel fast multipole algorithm (MLFMA). Any of the impedance sub-matrices (with size of m×n) associated
with the well-separated partitioning clusters (far interaction terms) is represented by the product of two much
smaller matrices (with sizes of m× r and r×n), where r is the effective rank. Therefore, the memory requirement
will be relieved and the total CPU time will be reduced significantly as well, since the rank is much smaller than the
original matrix dimensions. It should be noted that we don’t have to calculate all the impedance entries to implement
the aforementioned decomposition. Instead, we only need to calculate a few randomly chosen rows and columns
of those impedance entries. Further compressions based on singular value decomposition (SVD) are performed so
that the rank reaches its optimal limit, which leads to the optimized final matrix compression. Numerical examples
are provided to show the validity of the new algorithm. Future work directions are also discussed in this report.

Index Terms

Pseudo skeleton approximation, adaptive cross approximation, low rank matrix approximation, singular value
decomposition, electromagnetic scattering, sea surface scattering
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I. INTRODUCTION

Method of moments (MoM) [1] has been a very popular approach in solving electromagnetic scattering
problems. However, it has also raised challenging issues since it suffers from the memory requirement for
a large dense impedance matrix and computational complexity for large-scale problems. It is well known
that significant progress has been made in employing the fast multipole method (FMM) [2], [3], [4],
[5], to relieve the aforementioned limitations. For example, multilevel fast multipole algorithm (MLFMA)
[6], [7] incorporated with the iterative techniques can reduce the numerical complexity to O(N log N) to
solve integral equations. However, one of the major disadvantages of this approach is that the algorithm
is NOT independent of the integral equation kernel. That is, for integral equations with different kernels,
one has to make appropriate modifications [7] to implement the fast algorithm. Another approach to the
compression of operators is based on wavelets [8], [9], which exploit the smoothness of the elements of
the matrix viewed as a function of their indices and tends to fail for highly oscillatory operators.

On the other hand, approaches based on low-rank representation of impedance matrix blocks have
been also introduced in the field of computational electromagnetics. These include the so-called IES3

[10], IE-QR [11], [12], PILOT (predetermined interaction list oct-tree) [13], and ACA (adaptive cross
approximation) algorithms [14], [15]. In these methods, all the impedance matrix blocks (assume that the
size of the matrix is m× n) associated with the far interaction terms are represented by a product of two
much smaller matrices with sizes of m× r and r × n, where r is the effective rank of the matrix which
can be determined numerically. Thus, the memory requirement can be reduced from m×n to r×(m+n),
and the same ratio of CPU time saving can be obtained for matrix-vector product. The beauty of these
algorithms is their purely algebraic nature. That is, the computational speed-up is achieved by employing
linear algebra manipulations of the impedance matrix. Thus, the implementations of these algorithms do not
depend on the complete knowledge of the integral equation kernels. However, the algorithms’ complexity
is O(r2(m + n)), which is not trivial when m or n is big enough. And the other fatal limitation of these
algorithms is that they are not stable when the rank of the matrix is big according to our experience.

It should be noted that randomized algorithms [16], [17]can also be used for the construction of low-
rank approximation to matrices. The idea is that a randomized matrix is employed to project the low-rank
matrix to a much smaller space. Thus, a new matrix with much smaller dimensions is obtained. Then any
low-rank decompositon technique can be used to get the appropriate basis functions. And the corresponding
coefficient matrix can be calculated straight forward once the basis functions are known. Unfortunately,
all the entries of the low-rank matrix are needed for this method.

In this report, the pseudo skeleton approximation method [18] is employed for the purpose of matrix
decomposition. There are several advantages of the algorithm compared with the aforementioned algo-
rithms. First, the algorithm is very stable, which is very important; Secondly, its computational complexity
is O(r3), which is independent of m or n.

The report is organized as follows: First in Section II the pseudo skeleton approximation algorithm
is introduced, and a technique based on singular value decomposition (SVD) [19] is employed for
further matrix compression. Then some numerical results are presented in Section III to demonstrate
the performance of the current approach, followed by the discussions and future work directions.

II. EFFICIENT LOW-RANK MATRIX DECOMPOSITION USING PSEUDO SKELETON APPROXIMATION

In the field of computational electromagnetics, and many other areas, one often encounters matrices
whose ranks are much lower than their dimensionalities (rank deficient). Discretization of integral equations
almost always results in matrices of this type. For such kind of matrices, one is tempted to ”compress”
the matrices in question so that they could be efficiently applied to arbitrary vectors, and at the same time
the storage requirement can also be reduced (compressed) as well.

It should be noted that the entire impedance matrix obtained through MoM is neither singular nor rank
deficient except at the internal resonances. However, if all the unknowns are grouped into clusters like in
MLFMA, then all the sub-matrix blocks representing the interactions between two well-separated clusters
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(associated with the far interaction terms) are rank deficient and they can be compressed efficiently by
using the pseudo skeleton approximation method described below. As in MLFMA, all the diagonal sub-
matrix blocks (associated with self interactions) as well as all the sub-matrix blocks associated with the
interactions of any neighboring clusters are to be calculated directly via the conventional MoM approach.

In this Section, we will first give a brief introduction of the low-rank approximation. Then details of
the pseudo skeleton approximation will be presented.

A. Outline of low-rank matrix compression
Without loss of generality, assume that the size of a low-rank matrix A (representing interactions

between two well-separated clusters) is m × n. Our main aim is to decompose the matrix A into two
much smaller sub-matrices U and V . The original matrix A can be reconstructed through a product of U
and V . Namely,

A(m× n) ≈ U(m× r)V (r × n) (1)

where r is the effective rank of matrix A.
Instead of storing m×n impedance entries in the conventional method, the above low-rank compression

technique only requires to store r × (m + n) impedance entries.
Similarly, when the matrix A is directly applied to a vector, the computational complexity is m×n. In

contrast, we can first apply matrices V and then U to the vector in sequence, the associated complexity
will be r × (m + n).

For the electromagnetic problems, generally r ¿ min(m,n). Therefore, much CPU time will be reduced
and the memory requirement will be relieved significantly as well.

It has been proofed theoretically that SVD would find the best decomposition with given rank. In
other words, for a given accuracy, SVD will find the associated lowest rank. However, the algorithm is
very expensive, especially when the matrix dimensions are big. Direct application of QR factorization has
similar drawback. Therefore, in this report pseudo skeleton approximation will be employed to decompose
matrix A into U and V .

B. Pseudo skeleton approximation
Before going to the details of the pseudo skeleton approximation, we first review the skeleton approx-

imation method.
Assume that the rank of the matrix A is r. Then there exists a nonsingular r × r submatrix Â in A.

Denote the columns and rows of A containing the submatrix Â by C (with size of m× r) and R (with
size of r× n), respectively. That is, submatrix Â is the intersection of C and R. Then it is easy to verify
that

A(m× n) ≈ C(m× r)Â−1(r × r)R(r × n) (2)

This decomposition is known as a skeleton approximation of A.
The problem with skeleton approximation is that one should identify which columns and rows should

be chosen. Random selection will lead to a singular Â, thus not enough bases are embedded in those
columns and rows, and the inverse will not be available, which results in a fail decomposition.

ACA can be applied to get the above decomposition adaptively. That is, columns of C and rows of
R are iteratively added until an error criterion is reached. However, as mentioned before, ACA is still
expensive in the sense of complexity, and it is not stable when the rank of matrix is big enough.

Actually, the matrix can be approximated by

A(m× n) ≈ C(m× r)G(r × r)R(r × n) (3)
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where G is not necessary equal to the inverse of Â and even not necessarily nonsingular. For example,
G can be chosen as the pseudo inverse of Â. This kind of decomposition is called the pseudo skeleton
approximation.

Once the matrices C, G, and R are obtained, one can easily obtained the matrices U and V defined in
(1):

U = C (4)

V = GR (5)

Or we can have:

U = CG (6)

V = R (7)

Unlike using an iterative approach in ACA to find the columns of C and rows of R, here we just
randomly choose k columns and k rows from A, where k is a number large enough so that r most
important bases will be embedded in both column and row sub-matrices. Numerical experiments show
that k = 3r is good enough to obtain excellent results.

The complexity of computing the pseudo inverse of Â is O(r3), which is much less compared to ACA
considering the fact that r ¿ min (m,n).

C. Further compression of the matrices
It should be noted that the dimensions of the matrices C, R, and G are m × k, k × n, and k × k,

respectively. This guarantees that enough information is included in the matrices C and R. Therefore, the
sizes of the associated matrices U and V are m× k and k × n, respectively.

U and V must contain much redundancies since the rank (r) of the matrix A is smaller than k. On the
other hand, the vectors inside U and V are generally not orthogonal. To remove the redundancies, both
QR factorization and SVD can be employed here.

First employing QR factorization to decompose the matrix U and the adjoint of V , we have:

U(m× k) = Qu(m× k)Ru(k × k) (8)

V ′(n× k) = Qv(n× k)Rv(k × k) (9)

Then SVD is employed to decompose the product of matrices Ru(k × k) and R′
v(k × k):

Û(k × r)Ŝ(r × r)V̂ (r × k) = RuR
′
V (k × k) (10)

During this step, the effective rank r of the matrix A is determined:

r = sum(|diag(Ŝ)| > tol · |Ŝ(1, 1)|) (11)

where tol is the relative tolerance. Generally, tol is chosen to be 10−3.
Hence the final version of the decomposition of matrix A is as follows:

Ufinal(m× r) = Qu(m× k)Û(k × r) (12)

Vfinal(r × n) = Ŝ(r × r)(QV (n× k)V̂ ′(k × r))′ (13)

Note that QR factorization and SVD are applied on matrices with much smaller dimensions.
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III. NUMERICAL EXAMPLES

In this Section, we will present some numerical examples to show the accuracy and efficiency of the
new algorithm.

A. Selection of the sample numbers
An EM related impedance submatrix representing interaction between well separated groups is employed

here for the study of the selection of the sample numbers.
The size of the impedance matrix is 280 × 280, and its effective rank is 8 (determined numerically

according to equation 11).
The relative errors (the ratio of the Frobenius norm of the difference matrix to the original matrix) as

a function of sample numbers are shown in Figure 1.
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Fig. 1. Relative errors as a function of sample numbers. The horizontal axis is the number of samples, and the vertical axis is the relative
error.

From the Figure, we can see that the relative error is in the order of 10−5 when the number of samples
is 3 times of the effective rank. The relative error is in the order of 10−4 when the number of samples is
just twice of the effective rank, this should be good enough for most applications.

B. Accuracy of the pseudo skeleton approximation
To test the accuracy of the algorithm, we generate a random complex low-rank matrix. The size of the

matrix is 1200× 1200, and its rank is 10. The real and imaginary part of the matrix are shown in Figure
2.

30 randomly chosen columns and rows are used to obtain its pseudo skeleton decomposition. The
differences between the reconstructed matrix and the original one are shown in Figure 3. Clearly, we can
see that the pseudo skeleton approximation algorithm performs excellent.

C. RCS of a rectangular PEC plate
When the pseudo skeleton approximation method is applied for electromagnetic scattering problem, as

mentioned before, the computational domain is first broken into a lot of subgroups at different levels like
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(a)

(b)
Fig. 2. A random complex low-rank matrix. The size and rank of the matrix are 1200×1200 and 10, respectively. (a)Real part; (b)Imaginary
part.
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(a)

(b)
Fig. 3. Difference between the reconstructed matrix and the original one. (a)Real part; (b)Imaginary part.
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Fig. 4. Typical rank map of an EM problem. The target here is a 8λ× 8λ rectangular plate, and the computational domain is divided into
16 subgroups (2 levels). The sizes of all the submatrices are around 1200× 1200.

in MLFMA. In each level, those submatrices representing the interactions of well-separated subgroups
are compressed via the pseudo skeleton approximation. Then the equations are solved by the conjugate
gradient method.

As an example, a typical rank map of a rectangular plate is shown in Figure 4, where the computational
domain is broken in 2 levels. From the Figure we can see that there are a lot of low-rank submatrices, and
the ranks are very small compared to the their dimensions (around 1200× 1200). And those submatrices
associated with the neighboring subgroups (blank blocks in Figure 4 can be further divided in higher
levels. Therefore, a lot of memory and CPU time can be saved.

To show the performance of the pseudo skeleton approximation, a rectangular PEC plate is considered
here for the electromagnetic scattering analysis. The size of the plate is 4λ0 × 4λ0, where λ0 is the
wavelength in free space. The incident angles are: θi = 450, and φi = 0; and the scattering angles are:
θs = 450, and φs varies from 0 ∼ 3600. The associated radar cross sections (RCS) are shown in Figure 5.

MoM results are also presented as reference solutions. Four different curves are shown in each Figure.
We can observe that the low-rank approximation results of both co- and cross-polarizations agree with
the MoM solutions very well.

D. RCS of rough sea surface
The electromagnetic scattering analysis of an example rough sea surface is presented in this Section.

The sea surface used in this example is based on the Pierson-Moskowitz model. The schematic of the sea
surface generation is shown in Figure 6.

The Pierson-Moskowitz spectrum is defined as follows:

S(ω) =
αg2

ω5
exp[−β(

ω0

ω

4

)] (14)

where ω = 2πf , α = 8.1 × 10−3, β = 0.74, ω0 = g/U19.5. f is the frequency of the electromagnetic
wave, U19.5 is the wind speed at a height of 19.5m above the sea surface, and g is the acceleration of
gravity. An example rough sea surface with rms height of 0.1m (equivalent wind speed is 4.33m/s) is
shown in Figure 7. In this example, the frequency of the incident wave is 300MHz, hence the roughness
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(a)

(b)
Fig. 5. RCS of a rectangular PEC plate: MoM vs. pseudo skeleton low-rank decomposition. (a)Co-polarization; (b)Cross-polarization. The
horizontal axis is the observation angles, and the vertical axis is the radar cross section
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Fig. 6. Schematic of rough sea surface generation.

Fig. 7. An example rough sea surface with rms height of 0.1m.

of the sea surface is quite small in wavelength. Therefore, the reflection around the forward direction is
still very strong, as expected.

The size of the sea surface is 10λ0× 10λ0. The incident elevation angles are θi = −750 and φi = 0. To
reduce the edge effects, a tapering function is employed for smoothing. The bistatic RCS of 1 realization
is shown in Figure 8.

E. Complexity of the algorithm compared with MLFMA
To show the performance of the pseudo skeleton approximation, here the CPU time for calculate one

matrix-vector product is compared with the counterpart of MLFMA.
Five cases with different number of unknowns are considered by both MLFMA and pseudo skeleton

approximation, and the CPU times are shown in Figure 9. As a reference, a line proportional to N log N
is also presented. From the Figure, one can observe that the algorithm based on the pseudo skeleton
approximation is about 10 times faster than MLFMA.

It should be noted that there is a overhead to compress all the submatrices associated with the well
separated groups. However, one often need to calculate monostatic RCS at a lot of different angles in
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Fig. 8. Bistatic RCS of rough sea surface. The horizontal axis is the angle θs, and the vertical axis is the RCS.
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Fig. 9. Comparison of CPU time between MLFMA and the pseudo skeleton approximation. The horizontal axis is the number of unknowns,
and the vertical axis is the CPU time in seconds.

reality. That is, there will be a large number of right-hand sides in solving the Maxwell integral equations,
while the impedance matrix (the left-hand side) remains unchanged. In these cases, the algorithm based
on the pseudo skeleton approximation should perform much better since the overhead will be amortized.

IV. DISCUSSIONS AND FUTURE WORK

In this report, we present a novel algorithm based on pseudo-skeleton approximation for fast elec-
tromagnetic scattering analysis. In summary, the algorithm is purely algebraic in nature and hence its
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implementation is integral equation kernel independent. The algorithm first divides the whole compu-
tational domain into a lot of groups in different levels, exactly the same as wha is done in MLFMA.
Then all the submatrices representing well separated groups are compressed by the pseudo skeleton
approximation. It should be noted that only partial impedance entries are needed for this step, hence the
compression can be implemented efficiently. Next, further compressiones based on SVD are employed
so that the sizes of the decomposed submatrices will be close to their real ranks. Thus, the compressions
are maximized. Numerical examples show that the method does perform very well compared with the
conventional MLFMA.

There are a lot of work for further exploration in this area. An imediate list is as follows:
(1)Further optimize the algorithm, so the memory requirement and the CPU time can be further

reduced. For example, check if two neighboring rank defficient submatrices can be merged. Without
loss of generality, we consider two neighboring submatrices with size of 1000 × 1000 and rank of 10
(this is a typical case in EM problems). Based on the pseudo skeleton approximation, both of them can
be compressed as a produce of two smaller submatrices with sizes of 1000 × 10 and 10 × 1000. The
total memory requirement should be 2× (1000× 10 + 10× 1000) = 40000 for them. However, if we can
integrate them together, and assume they are neighbored along column direction and the rank is still 10,
then the total memory requirement will be 1000× 10 + 10× 2000 = 30000, which leads to a 25% saving
in both memory and CPU time.

(2)When very large targets, for example, very large area of rough sea surfaces, are considered, we
may incoporate the overlapped domain decomposition method (ODDM)[?] with the pseudo skeleton
approximation. ODDM is a improved version of the forware/backward buffer region sweep method for
3D problems. The whole domain is divided into a few overlapped subdomains. The pseudo skeleton
approximation is used for each subdomains. Once the current distributions of all the overlapped subdomains
are obtained, an iterative procedure can then be employed to get the current distribution on the whole
domain. Since the spurious edge effect of each subdomain can be effectively reduced becasue of the
overlapped regions, the convergence of the ODDM iterative process can be very fast (It was shown that
the iterative process converges in 2 or 3 iterations [20], [21]).

Since each subdomain can be modeled separately in sequence, thus the memory requirement is actually
mainly determined by the size of each subdomain, not the whole computational domain. On the other
hand, the current distribution on each subdomain can even be saved on hard disk, and be read later for the
iterative purpose. Since the iterative process generally converges in 2 or 3 interations, the time for reading
information from hard disk is definitely acceptable. Thus large targets can be easily handled without much
difficulties.

(3)The algorithm based on the pseudo skeleton approximation is perfectly suitable for parallelization.
All the subgroups can be easily assigned to different processors, and all the associated submatrices can
be decomposed locally. More important is that no information is needed to be exchanged among the
processors during the compression step. Similarly, the decomposition submatrices U and V can be allocated
to memory locally as well. Thus the parallelized version of pseudo skeleton approximation method could
be very efficient, compared to the parallelized MLFMA, where a lot of information is passed around all
the processors.

Combinding the parallelization technique, ODDM, and the pseudo skeleton approximation, it should
be very promising to solve very large problems.

(4)After parallelizing the algorithm, larger targets will be manageable. On the basis of that, we can
further investigate the submatrices representing the interactions between very well-separated groups. The
contributions of those submatrices should be very small and therefore they can be neglected and there is
no need to do the compressions. Once again, a lot of memory can be saved.
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